PART 1 GENERAL

A. The requirements of the Contract, Division 1, and Division 16 apply to work in this Section.

1.01 SECTION INCLUDES

A. Low Voltage, Front-Accessible and Front/Rear-Accessible switchboards with circuit breaker for mains and feeders and/or fusible switches for mains as specified below and shown on the contract drawings.

1.02 RELATED SECTIONS

1.03 REFERENCES

The low voltage switchboards and protection devices in this specification are designed and manufactured according to latest revision of the following standards (unless otherwise noted).

A. ANSI 61
B. ANSI/NEMA PB 2, Deadfront Distribution Switchboards
C. ANSI/NEMA PB 2.1, General Instructions for Proper Handling, Installation, Operation, and Maintenance of Deadfront Distribution Switchboards Rated 600 Volts or Less
D. ANSI/NFPA 70, National Electrical Code
E. NEMA AB 1, Molded Case Circuit Breakers and Molded Case Switches
F. NEMA KS 1, Fused and Non- fused Switches
G. UL 489, Molded Case Circuit Breakers and Circuit Breaker Enclosures
H. UL 891, Dead Front Switchboards
I. UL 98, Enclosed and Dead Front Switches
J. UL 977, Fused Power Circuit Devices

1.04 DEFINITIONS

A. Front-Accessible only shall be as defined by UL 891 standard which requires that all line and load connections for phase, neutral, and ground conductors

1.05 SYSTEM DESCRIPTION

A. The power system feeding Switchboard (insert designation) is [208] [480] [575] volts, [50] [60] Hertz, 3 phase, [3-] [4-] wire, [solidly grounded wye] [ungrounded delta] [corner grounded delta] [mid-phase grounded delta] [low resistance grounded wye] [high resistance grounded wye].

B. Switchboard(s) shall have [(front access and rear alignment for mounting against a wall)] [front and rear access]. <Switchboards shall be front and rear aligned.>

1.06 SUBMITTALS
A. Manufacturer shall provide [3] copies of the following documents to owner for review and evaluation in accordance with general requirements of Division 1 and Division 16:

1. Product Data on specified product;
2. Shop Drawings on specified product;
3. Trip curves for each specified product.

1.07 PROJECT RECORD DOCUMENTS
N/A

1.08 INSTALLATION, OPERATION AND MAINTENANCE DATA

A. Manufacturer shall provide [3] copies of installation, operation and maintenance procedures to owner in accordance with general requirements of Division 1 and Division 16.

1.09 QUALITY ASSURANCE (QUALIFICATIONS)

A. Manufacturer shall have specialized in the manufacture and assembly of low voltage switchboards for [25] years.

B. Low voltage switchboards shall be listed and/or classified by Underwriters Laboratories in accordance with standards listed in Article 1.03 of this specification.

1.10 REGULATORY REQUIREMENTS
N/A

1.11 MOCK - UPS (FIELD SAMPLES)
N/A

1.12 DELIVERY, STORAGE, AND HANDLING

A. Contractor shall store, protect, and handle products in accordance with recommended practices listed in manufacturer's Installation and Maintenance Manuals.

B. Ship each switchboard section in individual shipping splits for ease of handling. Each section shall be mounted on shipping skids and wrapped for protection.

C. Contractor shall inspect and report concealed damage to carrier within 48 hours.

D. Contractor shall store in a clean, dry space. Cover with heavy canvas or plastic to keep out dirt, water, construction debris, and traffic. Heat enclosures to prevent condensation.

E. Contractor shall handle in accordance with manufacturer's recommendations to avoid damaging equipment, installed devices, and finish. <Lift only by installed lifting eyes.>

1.13 PROJECT CONDITIONS (SITE ENVIRONMENTAL CONDITIONS)

A. Follow (standards) service conditions before, during and after switchboard installation.

B. Low voltage switchboards shall be located in well-ventilated areas, free from excess humidity, dust and dirt and away from hazardous materials. Ambient temperature of area will be between minus [30] and plus [25] degrees C (which is the maximum ambient temperature per UL 891 without the requirement to derate the switchboard). Indoor locations shall be protected to prevent moisture from entering enclosure.
1.14 SEQUENCING AND SCHEDULING N/A

1.15 WARRANTY

A. Manufacturer warrants equipment to be free from defects in materials and workmanship for 1 year from date of installation or 18 months from date of purchase, whichever occurs first.

1.16 MAINTENANCE SERVICE N/A

1.17 EXTRA MATERIALS N/A

1.18 FIELD MEASUREMENTS

A. Contractor shall make all necessary field measurements to verify that equipment shall fit in allocated space in full compliance with minimum required clearances specified in National Electrical Code.

PART 2 PRODUCTS

2.01 MANUFACTURER

A. General Electric Company products have been used as the basis for design. Other manufacturers' products of equivalent quality, dimensions and operating features may be acceptable, at the Engineer's discretion, if they comply with all requirements specified or indicated in these Contract documents.

2.02 EQUIPMENT

A. Furnish GE Type Spectra Bolt-On™ Switchboards (or approved equal).

2.03 COMPONENTS

A. Refer to Contract Drawings for actual layout and location of equipment and components; current ratings of devices, bus bars, and components; voltage ratings of devices, components and assemblies; interrupting and withstand ratings of devices, buses, and components; and other required details.

B. Standard Features

1. Switchboards shall be fully self-supporting structures with [[90] [78]] inch tall vertical sections (excluding lifting eyes and pull boxes) bolted together to form required arrangement.

2. Switchboard(s) (insert switchboard designation) shall be [[NEMA 1] [NEMA 3R non walk-in] [NEMA 3R walk-in]] deadfront construction. NEMA 3R construction shall be as listed below.

3. Switchboard frame shall be die formed, 12 gauge steel with reinforced corner gussets. Frame shall be rigidly bolted to support cover plates (code gauge steel), bus bars and installed devices during shipment and installation.

4. All sections may be rolled, moved or lifted into position. Switchboards shall be capable of being bolted directly to the floor without the use of floor sills.
5. All switchboard sections shall have open bottoms and removable top plate(s) to install conduit.

6. Front-Access only switchboard sections shall be [{rear aligned} {front and rear aligned}] for placement against a wall. Front/Rear-Access switchboards shall be front and rear aligned.

7. Switchboards shall be UL listed.

8. Switchboards that are series rated to short circuit requirements shall be appropriately labeled. Tested UL listed combination ratings shall be included in UL recognized Component Directory (DKSY2).

9. All covers shall be fastened by hex head bolts.

10. Provide hinged doors over metering compartments and individually mounted device compartments. All doors shall have concealed hinges and be fastened by hex head bolts.

11. Switchboard protective devices shall be furnished as listed on drawings and specified herein, including interconnections, instrumentation and control wiring. Switchboards and devices shall be rated for the voltage and frequency listed on the drawings.

12. Switchboard current ratings, including all devices, shall be based on a maximum ambient temperature of 25 degree C per UL Standard 891. With no derating required, temperature rise of switchboards and devices shall not exceed 65 degrees C in a 25 degree C ambient environment.

13. Switchboard Service Entrance sections shall comply with UL Service Entrance requirements including a UL service entrance label, incoming line isolation barriers, and a removable neutral bond to switchboard ground for solidly grounded wye systems.

14. The group mounted feeder breaker and/or main devices within switchboards shall be circuit breakers only. Mounting for the group mounted devices shall be by bolted connections. No plug-in type connections shall be used for current carrying components.

C. Bus Bars

1. Bus bars shall be [{tin-plated aluminum} {silver-plated copper}]. The bus bars shall have sufficient cross sectional area to meet UL 891 temperature rise requirements through actual tests. { The bus bars shall be [{standard density rated for 1000 amperes per square inch copper} {standard density rated for 750 amperes per square inch aluminum} {reduced density rated for 800 amperes per square inch copper} {reduced density rated for 600 amperes per square inch aluminum}]. Phase <and neutral > bus ampacity shall be as shown on the plans. <{The neutral bus shall have the same ampacity as the phase bus.}>}

2. Bus bars shall be mounted on high impact, non-tracking insulated supports. Joints in the vertical bus are not permitted.

3. Bus bars shall be braced to withstand mechanical forces exerted during short circuit conditions as indicated in drawings, but in no case less than 65KA RMS SYM.

4. Bus joints shall be bolted with high tensile steel [Grade 5] bolts. Belleville type washers shall be provided with aluminum bus. Welded connections are unacceptable.

5. Ground Bus shall be sized to meet UL 891. Ground bus shall extend full length of
SECTION 16425200
LOW VOLTAGE SWITCHBOARDS - Spectra Bolt-On™

switchboard.

6. A-B-C bus arrangement (left to right, top to bottom, front to rear) shall be used throughout to assure convenient and safe testing and maintenance. Where special circuitry precludes this arrangement, bus bars shall be labeled.

7. All feeder device line and load connection straps shall be rated to carry current rating of device frame (not trip rating).

8. The main incoming bus bars shall be rated for the main protection device frame size or main incoming conductors, if there is no main device.

9. Main horizontal bus bars shall be [{standard tapered per UL}{fully rated and arranged for future extensions}].

D. Utility Metering Compartments (Select either 1 or 2 below)

[1. A utility metering compartment is not required within the switchboard.]

[2. Provide a utility metering compartment per] <(enter Power Company name) standards.> [{Compartment shall be barriered} from the rest of the section, have a hinged lockable front cover, removable bus links with provisions for mounting current transformers, and when required, provisions for mounting voltage transformers. Current and voltage transformers shall be supplied by][{the utility company}{the switchboard vendor}][{and installed by}][{the utility company}][{an electrical contractor}][{the switchboard vendor}].

E. Main Incoming Compartment

[1. Furnish switchboard(s) (List each by designation) arranged for][{bottom entry of incoming cable}][{top entry of incoming cable}]

[a. All lugs shall be tin-plated aluminum and UL listed} for use with [{copper cable}][{aluminum cable}][{Lugs shall be rated for 75 degree C. Cable}]

[b. Provide mechanical}{b. Provide crimp compression type}][{lugs in the quantity and size required} per the contract drawings.]

[2. Furnish switchboard(s) (List each by designation) with provisions for a terminating][{bottom entry bus duct}][{top entry bus duct}]

[3. Furnish switchboard(s) (List each by designation) with a transition for close-coupled connection to a transformer.]

F. Main, Tie, and Feeder Devices

1. Main device shall be [{individually mounted, insulated case circuit breaker}{individually mounted high pressure contact fusible switch}{group mounted molded case circuit breaker}]. Provide device as specified in appropriate article below.

2. Tie device(s), if included, shall be the same as the main device.

3. Feeder devices shall be group mount molded case circuit breakers or when larger than 1200 amps shall be [{individually mounted insulated case circuit breakers}{individually mounted high pressure contact switches}]. Provide devices as specified in appropriate
4. All circuit protective devices shall have the following minimum symmetrical current interrupting capacity: \(\{18kA\} \{25kA\} \{35kA\} \{50kA\} \{65kA\} \{100kA\}\) \(\) [as listed on the contract drawings].

5. Series rated feeders are acceptable. Tested UL listed combination ratings shall be included in UL recognized Component Directory (DKSY2).

G. Molded Case Circuit Breakers

1. Molded case circuit breaker shall have be provided with the following symmetrical current interrupting capacity: \(\{18kA\} \{25kA\} \{35kA\} \{50kA\} \{65kA\} \{100kA\}\) \(\) [as listed on the contract drawings].

2. Furnish GE Spectra RMS™ Molded Case Circuit Breakers. \(\) [Thermal magnetic molded case circuit breakers] may be provided for trip ratings 150 amps and below.

3. Group mounted breakers shall be connected to the vertical bus by bolted connections.

4. Individually mounted molded case circuit breakers shall be stationary mounted.

5. Circuit breaker frames shall be constructed of a high-strength, molded, glass-reinforced polyester case and cover. Breakers shall have an overcenter, toggle handle-operated, trip free mechanism with quick make, quick break action independent of the speed of the toggle handle operation. The design shall provide common tripping of all poles. Breakers shall be suitable for reverse feeding.

6. Breakers shall have ON and OFF position clearly marked on escutcheon. Breakers shall include a trip-to-test means on the escutcheon for manually tripping the breaker and exercising the mechanism and trip latch.

7. Breakers shall include factory installed mechanical lugs. Lugs shall be UL listed and rated 75 or 60/75 degrees C as appropriate. Breakers shall be standard, or 80 percent rated.

8. Breakers \(\) [larger than 150 amps] \) shall use digital true RMS sensing trip units and a rating plug to determine the breaker trip rating.

9. Each \{main\}, \{feeder\}, \{tie\} \{breaker with a frame size 400 amps and larger\} shall have digital electronic trip units as described in Article 2.03.I.

10. Where indicated on the drawings, circuit breakers with trip ratings greater than 250 amperes to 1000 amperes shall be UL listed as 100 percent continuous duty rated.

H. Insulated Case Circuit Breakers

1. Insulated case circuit breakers shall be GE type \{Power Break \} \{Power Break® II\}. Breakers shall be individually mounted.

2. Main <and tie> breakers shall be \{manually\} \{electrically\} operated, \{stationary\} \{drawout\} mounted. Feeder breakers (larger than 1200 amps) shall be \{manually\} \{electrically\} operated, \{stationary\} \{drawout\} mounted.

3. Breakers shall be constructed of a high dielectric strength, glass reinforced insulating
case. The interrupting mechanism shall be arc chutes. Steel vent grids shall be used to suppress arcs and cool vented gases. Interphase barriers shall isolate completely each pole.

4. Breakers shall contain a true two-step stored energy operating mechanism which shall provide quick make, quick break operation with a maximum five cycle closing time. Breakers shall be trip free at all times. Common tripping of all poles shall be standard.

5. Insulated Case circuit breakers shall be rated to carry 100 percent of their frame ampacity continuously.

6. A charging handle, close push-button, open push-button, and Off/On/Charge indicator shall be located on the breaker escutcheon and shall be visible with the breaker compartment door closed.

7. Where drawout breakers are specified, the drawout design shall permit the breaker to be withdrawn from an engaged position, to a test position, and to a disengaged position.

8. Breaker digital electronic trip units shall be as described in Article 2.03.I.

I. Digital Electronic Trip Unit for Circuit Breakers

1. Furnish GE MicroVersaTrip® Plus or PM digital electronic trip units as specified below.

2. Each main, feeder, and tie circuit breaker shall be equipped with a digital electronic trip unit. The trip unit shall provide protection from overloads and short circuits and ground faults. The protective trip unit shall consist of a solid state, microprocessor based programmer; tripping means; current sensors; power supply and other devices as required for proper operation.

3. As a minimum, the trip unit shall have the following protective functions:
 a. adjustable current setting or long time pickup;
 b. adjustable long time delay;
 c. adjustable instantaneous pickup;
 d. adjustable ground fault pickup and delay for main, tie, and feeder;
 e. adjustable short time pickup and delay for main, tie, and feeder.

4. As a minimum, the trip unit shall include the following features:
 a. Long time and short time protective functions, if provided, shall have true RMS sensing technology.
 b. Ground fault protective function, if provided, shall contain a memory circuit to integrate low level arcing fault currents with time, to sum the intermittent ground fault spikes.
 c. High contrast liquid crystal display (LCD) unit shall display settings, trip
targets, and the specified metering displays.

d. Multi-button keypad to provide local setup and readout of all trip settings on the LCD.

e. UL Listed interchangeable rating plug. It shall not be necessary to remove the trip unit to change the rating plug.

f. An integral test jack for testing via a portable test set and connection to a battery source.

g. A mechanism for sealing the rating plug and the trip unit.

h. Noise immunity shall meet the requirements of IEEE C37.90.

i. Display trip targets for long time, short time, and ground fault, if included.

5. The trip unit shall include the following metering functions, which shall be displayed on the LCD (if the manufacturers trip unit can not incorporate the specified functions, separate device(s) with equal function shall be provided for each breaker):

 a. Current, RMS, each phase;

 b. Voltage, RMS, line - to - line, or line - to - neutral;

 c. Energy, KWH, total;

 d. Demand KWH, over an adjustable time period of 5 to 60 minutes;

 e. Peak demand, KW, user resettable;

 f. Real power, KW, line - to - line, line - to - neutral;

 g. Total (apparent) power, KVA, line to - line, line - to - neutral.

J. Individually Mounted Fusible Switches

1. Furnish GE type HPC high pressure contact fusible switches.

2. High pressure contact fusible switches shall be butt type contact construction with
multiple, spring loaded main arms and an arcing arm per pole. An over-center toggle mechanism shall provide quick make, quick break operation.

3. Switches shall have a molded insulating case and cover with integrally molded interphase partitions. All current carrying parts shall be silver plated copper.

4. Fusible switches shall be equipped with mounting provisions for UL class L fuses. Switches shall have an interrupting rating of 200 kAIC RMS SYM at 600V when used with class L fuses. Provide a complete set of UL class L fuses for each switch.

5. Switches shall be rated for making and breaking 12 times nameplate rating current at 600 VAC. Switches shall be rated to carry 100 percent of their frame ampacity continuously.

6. Switches shall be manually operated and stationary mounted. Switches shall have a front mounted operating handle for charging the closing springs and closing the switch and a push-button for opening the switch. Switches shall include a visible external ON-OFF indicator.

7. Switches shall have defeatable, front access, coin proof interlocks. Interlocks shall prevent opening switch door when switch is ON and prevent turning switch ON when door is open. Switches shall include provisions for padlocking the switch in the open position.

2.04 METERING

A. Furnish [a multi-function electronic monitor] [analog meters] as described below and where indicated on the drawings.

1. Multi-function electronic monitor

a. General Description

1) The Modbus® Monitor shall be a microprocessor based device that shall allow for local interface with the power management system devices as well as other Modbus communicating devices connected to the Modbus monitor devices. The Monitor shall read metering and status information collected by power management devices connected to the segment.

2) The Monitor shall serve as the central location for reading data from remote devices on the RS-485 networks connected to it.

3) The Monitor shall have a local event log.

4) The Monitor shall be able to communicate over the RS - 485 segment at a speed of 1200 to 19,200 baud.

b. The Monitor shall include the following components:

1) The front panel shall contain:

a) a 10.75 inch, diagonal, VGA electroluminescent display.

b) a membrane keyboard shall be located below the display
screen.

c) an RS-232 port in the lower right hand corner to to connect a PC to configure the Monitor.

2) The monitor shall contain:

a) terminals for AC or DC control power;

b) ground connection;

c) one RS-485 connectors;

d) On/Off switch.

c. Mounting

1) The Monitor shall mount in a switchgear, switchboard, low voltage motor control center, or Hoffman enclosure cutout, with a minimum of 0.25 inch clearance behind and below it for proper cooling.

d. Software

1) The Modbus Monitor must be compatible with the GE Power Management Control System (PMCS) and host software.

2) The Modbus Monitor Configuration Tool software, (furnished with the Monitor) shall be used to configure devices to furnish data to the Monitor. The Configuration Tool shall be compatible with Windows 3.1 or later.

e. Supported Devices

1) The Monitor shall support any generic register-based device using the Modbus RTU protocol on an RS-485 network, hybrid devices that combine features of tightly integrated devices with the flexible custom configuration used for generic devices, and the GE PMCS 6.0 devices. (See Extended Section 16941003.)

f. Basic Operations

1) The Monitor shall have the following functional categories.

a) View: Monitor Configured Devices

b) Setup: Configure Devices and Change Options

c) Diagnostics: Troubleshooting

g. Modbus Monitor Specifications

1) Control Power: 100-240 VAC, 50-60 Hz; 125-250 VDC; 30 W, minimum
2) Modbus Communications: RS-485 ports
 a) 1200, 2400, 4800, 9600, or 19200 baud (User configurable)
 b) No Parity, eight data bits, one stop bit
3) Mating Connector: Precision Connector Designs (PCD), ELFT03260 or equivalent (supplied with Monitor)
4) RS-485 Modbus interconnection terminals will accommodate #24 to 12 AWG copper wire.

[2. Analog Meters]
 a. Provide switchboard class ammeters, voltmeters, watt-hour demand meters, and switches where indicated on the drawings.
 b. Ammeters and voltmeters shall be taut-band, indicating-type, switchboard class GE model AB-40 or equal. They shall have an accuracy in accordance with ANSI standards of two percent. Meters shall be four and one-half inches square with a 250 degree scale arc.
 c. Ammeters shall have a 5 amp, full scale movement with a scale of zero to the primary rating of the CTs. Voltmeters shall be direct reading where PTs are not shown or have a 150 volt, full scale movement where PTs are shown. Scale of voltmeters shall be zero to 600V.
 d. Watt-hour meters shall have two and one-half stators on 3 phase, 4-wire wye systems and 2 stators on 3 phase, 3-wire delta systems. Demand register interval shall be minutes. Meter shall include a pulse initiator using a form C contact.

2.05 METERING TRANSFORMERS
 A. All instrument transformers shall be UL listed and classified as indicated in drawings.
 B. Current Transformers shall be as shown on drawings with burden and accuracy to support connected meters and relays as required by ANSI/IEEE C57.13.
 C. Potential transformers shall be as shown on drawings with burden and accuracy to support connected meters and relays as required by ANSI/IEEE C57.13.

2.06 FINISH
 A. All steel surfaces shall be chemically cleaned prior to painting.
 B. Exterior paint color shall be ANSI 61 Light Gray over phosphate - type rust inhibitor.

2.07 ACCESSORIES
 A. Fuses
 1 Manufacturer: Gould - Shawmut (or equal).
 2. Interrupting Rating of all fuses shall be [200,000] RMS amperes.
<{B. Molded Case Circuit Breaker Accessories}

1. Provide breaker accessories, UL listed for factory or field installation and common to all breaker frame sizes as indicated below and on the drawings:

 [{a. shunt trip} {a. undervoltage release}]

 <{1 Shunt trip rated }{120 VAC}{480 VAC}>

 <{b. auxiliary switch with }{1}{2}{ form C contacts;}>

 <{c. bell alarm.}>

<{C. Individually Mounted Fusible Switch Accessories}

1. Provide the following UL listed accessories:

 [a. {120}{240}{480}]{ VAC Electric trip} { and control power transformer}.

 <{b. Blown - fuse Protector.}>

 {c. Provision for Key Interlock.}>

 <{d. Auxiliary Switches with }{1}{2}{3}{4} { single-pole, double-throw elements.}>

 {e. Integral, self-powered ground fault protection} relay with mechanical ground fault indicator, test function, adjustable current pick-up and time delay, and current sensors as required. Ground fault relay shall have an internal memory circuit that integrates intermittent arcing ground faults with time.>

<{D. Outdoor Enclosures}

1. Provide where shown on drawings or indicated in this specification.

2. Consist of standard indoor cubicles with a front frame and roof assembly to provide a weather resistant structure. Filtered front and rear roof vents. Space heaters>{{fed from control power transformer in switchboard.}}{{fed from separate source as indicated on drawings.}}

4. Walk-in construction shall have a minimum 30 inch wide clear walk through space

5. Front to rear full depth lifting beams.

6. Include the following options

 {a. Thermostatic control for space heaters.}

 {b. Gasketing.}

 {c. Fluorescent lighting and convenience outlets.}
{d. Rear hinged doors with 3 point catch} with padlocking provision and wind stop.>

<{E. Furnish adhesive plastic strip mimic bus for switchboards.}>

<{F. Furnish nameplates for each device} as indicated in drawings. Color schemes shall be as indicated on drawings.}>

<{G. Furnish automatic breaker throwover equipment.} System shall be PLC based.>

<{H. Provide Transient Voltage Surge Suppression} system as specified in Section 16479010.>

<{I. Provide Automatic Throwover PLC 9030, system} as specified in Section 16912000.}>

2.08 TESTING

PART 3 EXECUTION

3.01 EXAMINATION

A. The following procedures shall be performed by the Contractor.

1. Examine installation area to assure there is enough clearance to install switchboard.

2. Check concrete pads for uniformity and level surface.

3. Verify that Spectra Series™ switchboards are ready to install.

4. Verify field measurements are as [{shown on Drawings}{instructed by manufacturer}].

5. Verify that required utilities are available, in proper location and ready for use.

3.02 LOCATION

3.03 INSTALLATION

Additional provisions and editing may be required for this part.

A. Installation shall be performed by the Contractor.

1. Install per manufacturer's instructions.

2. Install required safety labels.

3.04 FIELD QUALITY CONTROL N/A

3.05 ADJUSTING N/A

3.06 CLEANING N/A

END OF SECTION